4 Ways Mobile Devices Have Transformed Remote Monitoring and Process Control

mobileHMI

Mobile devices have changed many things about the way we live and work today. They’ve changed the way we interact with each other, consume new media, purchase goods and services – they have become essential lifestyle accessories in a relatively short period of time. This is true not only for individuals, but entire industries have been impacted in a significant way.

With that in mind, here’s a look at 4 ways in which mobile devices are changing remote monitoring and process control.

Remote Device Monitoring

Mobile devices can be used as portable HMIs (Human Machine Interfaces) to monitor remote equipment in the same way that standard HMIs are used. Field operators can quickly and easily assess the current conditions of a process or piece of equipment without being tied to a workstation.

This can be particularly useful for checking the system-wide effects of repairs or configurations that are made to field equipment, rather than manually visiting each piece of equipment to take measurements or waiting until someone in the control room lets him/her know about any potential problems or abnormalities.

There may also be situations in which a problem can be diagnosed and corrected without even visiting the site. By giving field operators and technicians the ability to access real-time data from wherever they may be, it may possible to eliminate any travel time or expense, freeing the operator or technician to work on other tasks. This may also eliminate the need for the technician to call back to the control room for updated information. This means the control room operator now has more time as well.

 

Viewing Documents and Other Media

In addition to monitoring and controlling processes and equipment, mobile devices can also serve as a sort of repository for useful information, providing a handy reference for materials that would ordinarily fill several books and would be nearly impossible to carry around over the course of a work day.

New workers can reference training materials like manuals, pictures and videos. Use tablets and smartphones to access safety guidelines or troubleshooting procedures. View schematics and diagrams.  Review incident reports or outstanding work orders.

If you think of mobile devices as nothing more than a portable library of relevant media, this use alone is enough to justify the investment.

 

Filling out Forms or Checklists

Operators and technicians frequently have a need to add information to a database regarding certain tasks performed – or simply as part of their day-to-day responsibilities. Whether performing inspections, completing service orders, updating personnel files, or any number of other tasks, mobile devices can save employees a tremendous amount of time by allowing them to perform these tasks from anywhere at any time.

 

Field technicians can update the control system instantaneously from the field – without having to return to the control room to fill out a form or deliver the results to a control room operator over the phone.  It’s not hard to imagine a scenario where a technician in the field, several miles from any control room, can use a single device to read a procedural document, review a checklist, enter relevant information into a form, then check to confirm that the information was entered completely and accurately – without any unnecessary travel time or phone calls.

 

Collaborating

One of the most profound applications of mobile devices is as a tool for instant collaboration. By allowing continuous access to live process data, personnel from different departments can collaborate and make decisions with up-to-date and accurate information at their fingertips.

Mobile devices can be used to document best practices by uploading pictures or videos of particular procedures and allowing these items to be reviewed by workers at other locations in other facilities. Smartphones and tablets allow personnel to access rich media at any time as a means of conveying a certain set of information to relevant parties. Use displays of real time and historical data in meetings or presentations. Mobile devices allow off-site personnel to participate in real-time activities with on-site personnel. Many possibilities are introduced by mobile technology.

Excerpted from the whitepaper “The Benefits of Data Mobility”, downloaded at www.scada.com.

3 Things to Consider Before Choosing an IoT Platform for your Business

3things

Like many others, you may be considering ways to leverage new IoT technology to advance your business. Whether that means buying new sensors, servers, routers, or other devices – that depends on your goals and expectations. No matter what you envision, though, you are very likely to need some sort of software platform to enable it. Your software is what will transform your operational data into meaningful information, and your software will provide the interfaces your staff will use to interact with the information provided. Ideally, your software platform will provide many other benefits as well, including an ability to archive data, a way to automate certain tasks and enforce rules, and an ability to be customized and/or scaled to meet the needs of your growing business.

How do You Start Your Search?

Before selecting a software platform, it’s good to start with a clear idea of your needs, expectations, and goals. Then, when evaluating different platforms, see how they measure up against your checklist. This won’t necessarily help you choose the right platform, but it can certainly help you identify the wrong ones.

There are countless things to consider if you want to be rigorous to the point of decision paralysis, but if you’re eager to move forward, here are 3 important things to consider:

Think About Security

Every organization has a particular structure that must be maintained. Staff members need to have access to certain information to do their jobs and nothing more. This is not just a matter of security, but simple efficacy. There is no reason to burden someone’s mind with information that has no impact on their personal responsibilities within the organization.

It’s important that your software platform provides a means of managing user access. A maintenance technician logging in should not see the same information as a C-level executive. The technician does not need to see a graph depicting recent trends in discretionary spending any more than the executive needs to see a list of open work orders.

Of course, this should not be a matter of simply directing a certain user to a certain dashboard. The system should include the ability to completely lock down certain sets of information so that they cannot under any circumstances be accessed by another user.

Think About Your Existing Systems

Is this new system going to completely replace all your existing management systems? Or is it being installed as a supplement to what’s already in place? It may be possible to enhance and add value to your existing systems if done correctly. Will the new system communicate with your old systems and devices? Will it be read-only or bi-directional?

Unless you want to do a full replacement of your current systems, there will be many questions to ask about how all of these moving parts will fit together.

 

Think About the Future

Implementing your new IoT system will require some significant investment – both in resources and time. It’s important that the work done today doesn’t need to undone tomorrow when your work practices or business processes change. Ensure that the system you put in place today can be extended or modified as needed.

Assuming everything goes according to plan, it won’t be long before you’re thinking about expanding. Make sure your IoT software system doesn’t handcuff you.

Excerpted from the whitepaper “Choosing the Right IoT Platform”, downloaded at www.scada.com.

4 Common Obstacles Between Your Enterprise and the IoT

roadClosed

 

It should come as no surprise that most companies today have some sort of IoT initiative being discussed, planned, or developed – if not already implemented. And this phenomenon is global and completely horizontal. The early adopters of IoT are already seeing positive returns, and the march of progress is overwhelming if not inevitable.

Why Aren’t We All There Yet?

For those still planning their IoT initiatives and smoothing out the details, there are several barriers that can get in the way. Some of the most commonly cited in surveys include: security concerns, difficulty quantifying ROI to CEOs, concerns about compatibility with existing data systems, and concerns about the technical skills of the staff to implement such strategies.

Obstacle 1 – Increased Exposure of Data/Information Security

As could be expected, security is the almost always biggest concern in most organizations. With the World Wide Web as an example, people today are fully aware of the dangers inherent in transmitting data between nodes on a network. With many of these organizations working with key proprietary operational data that could prove advantageous to a competitor if exposed, the concern is very understandable.

Obstacle 2 – Proving ROI/Making the Business Case

This is a classic example of not knowing what you don’t know. Without an established example of how similar initiatives have impacted your organization in the past – or even how similarly sized and structured organizations have been impacted – it can be very difficult to demonstrate in a tangible way exactly how these efforts will impact the bottom line. Without being able to make the business case, it will be difficult for executives to sign off any new initiatives. This is likely why larger organizations ($5+ billion in annual revenue) are much more likely to have already implemented IoT initiatives, while smaller organizations are still in the planning phase.

Obstacle 3 – Interoperability with Current Infrastructure/Systems

Nobody likes to start over, and many of the executives surveyed are dealing with organizations who have made enormous investments in the technology they are currently using. The notion of a “rip and replace” type of implementation is not very appealing. The cost is not only related to the downtime incurred in these cases, but the wasted cost associated with the expensive equipment and software systems that are being cast aside. In most cases, to gain any traction at all a proposed IoT initiative will have to work with the systems that are already in place – not replace them.

Obstacle 4 – Finding the Right Staff/Skill Sets for IoT Strategy and Implementation

With the IoT still being a fairly young concept, many organizations are concerned that they lack the technical expertise needed to properly plan and implement an IoT initiative. There are many discussions taking place about how much can be handled by internal staff and how much may need to be out-sourced. Without confidence in their internal capabilities, it is also difficult to know whether they even have a valid strategy or understanding of the possibilities. Again, this is a case where larger organizations with larger pools of talent have an advantage.

There are some valid concerns, and not all of them lend themselves to simple solutions. In truth, many of the solutions will vary from one organization to the next. However, in many cases the solutions could be as simple as just choosing the right software platform. Finding a platform that eases your concerns about interoperability can also help ease your concerns about whether your staff can handle the change, as there will be no need to replace equipment. Likewise, a platform that can be integrated seamlessly into your current operations to help improve efficiency and implement optimization strategies will also make it much easier to demonstrate ROI.

Excerpted from the whitepaper “Choosing the Right IoT Platform”, downloaded at www.scada.com.

Is the Internet of Things Really Happening?

Over the last few years there has been much speculation about the inevitable growth of the Internet of Things (or Internet of Everything). Forecasts have suggested anywhere from 30 to 50 billion devices will be connected by 2020. Cisco has estimated that the global IoT ecosystem will have a value of $14.4 trillion by 2022, and IDC has projected yearly IoT market revenue to increase to $1.7 trillion by 2020.

Here we are now in 2016, a few years into the future they were talking about back then, and it may be a good time to take a look the current state of the IoT and see how it measures up to all of these lofty expectations. Are people really embracing IoT technology at this rate? Is this money really being invested?

connectedDevices.png

Connected Devices

First, let’s take a look at the number of connected devices. If we flash back to 2013, we find that Gartner released a report entitled “Forecast: The Internet of Things, Worldwide, 2013”. In this report, they predicted that the IoT will include 26 billion connected devices by 2020. Two years later, Gartner reported a total of 4.9 billion connected devices at the end of 2015, up from 3.8 billion in 2014. Gartner also revised their 2020 estimate, anticipating 20.7 billion connected devices by 2020, a decrease of 5.3 billion (20.4%) from their 2013 estimate. (It should be noted here that Cisco continues to anticipate as many as 50 billion by 2020).

So, according to Gartner, IoT adoption has not proceeded at the rate they had anticipated at the end of 2013.

One reason for the slower-than-expected growth is the difficulty faced when trying to implement IoT technology. In fact, Gartner anticipates that through 2018, 75% of IoT projects will take up to twice as long as planned.

Value of the IoT

Now, let’s consider the monetary value of the IoT and how that number has progressed. Cisco initially projected a value of $14.4 trillion by 2022. Within two years Cisco had increased this number to $19 trillion.

value.png

This highlights an interesting fact. Even though fewer connected devices are expected by this date, the total value of these devices and the underlying network is expected to be greater than it was when more devices were expected. Based on this, I think it’s safe to suggest that implementing IoT technology is turning out to be more expensive than originally thought.

This may be due in part to the fact that some enterprises are rushing headlong into IoT projects without the proper foresight and planning. Often it is a reaction to competitive pressure, based on a perception that a competitor is already moving forward with their IoT strategy, or simply in an effort to be the first and gain a competitive edge.


“I think it’s safe to suggest that implementing IoT technology is turning out to be more expensive than originally thought.”


Another answer may come from Gartner’s 2015 report: “Predicts 2015: The Internet of Things”, in which Gartner predicts that through 2018, there will be “no dominant IoT ecosystem platform”. They cite a lack of IoT standards and anticipate that IT leaders will be forced to compose solutions from multiple providers.

 

Read our White Paper on Choosing the Right IoT Software Platform

IoTPlatformWP_cover.png
Read It Now

 

 

Even when faced with these realities, however, enterprises are still moving forward with their IoT projects. The extra expense – though unanticipated – is not nearly enough to outweigh the potential benefits. The IoT is most certainly transforming the way businesses operate, and no one wants to be the last one to this dance.

IoT Investment

This is an important category as it will largely determine how quickly the industry moves to develop standards, and how motivated IoT solution providers will be to develop more powerful and more cost-effective solutions.
Recall IDC’s projection of annual market revenue reaching $1.7 trillion by 2020. It would stand to reason that if we are learning that IoT projects are coming in over budget and late, there is probably some distaste in the marketplace, and maybe IDC’s projection was a bit ambitious.

At the same time, though, if people are spending more on IoT initiatives than they had originally planned, perhaps IDC’s projection was a bit conservative. Let’s examine how things are taking shape.

In 2015, IDC reported that worldwide IoT spending reached $655.8 billion in 2014 and calculated a 16.9% CAGR (Compound Annual Growth Rate).

Well, 2015 is now in the books and we can see how IDC’s projections seem to be holding up. Their latest report indicates that spending in 2015 reached $698.6 billion, a CAGR over 2014 of only 6.53%. Had IDC’s anticipated CAGR proven accurate, 2015 revenue should have been closer to $766 billion.

Notwithstanding this fact, however, IDC continues to project a CAGR of 17% and an increase in spending to $1.3 billion by 2019, which would equal approximately $1.5 billion in 2020. It looks like IDC sees the IoT market cooling off a bit, though not much.

revenue.png
So, while the earlier projection has proven to be overly optimistic, it is clear that investments in IoT initiatives are continuing to increase with no end in sight.

If there is any kind of meaningful takeaway from all of this, I think it’s safe to surmise that IoT projects may be coming in late and over budget, but that doesn’t seem to have had much of an impact on continued investments. It is clear that business owners and executives see the value and have no interest in letting their competitor’s gain an edge.
So, was the IoT hyped a bit excessively over the last couple of years? Maybe a bit. But, it is also very real and happening right now.

3 Reasons Modern Farmers Are Adopting IoT Technology at an Astounding Rate

It seems like everything today is touched in some way by the Internet of Things. It is changing the way goods are produced, the way they are marketed, and the way they are consumed. A great deal of the IoT conversation has revolved around transformation in industries like manufacturing, petrochemical, and medicine, but one industry that has already seen widespread adoption of IoT technology is often overlooked: agriculture.

Of course, many of us are very familiar with some of the efforts that have been made to optimize food production. As populations continue to grow, there has been a serious and sustained drive to increase the crop yield from our available arable land. Some of these efforts have not been particularly popular with consumers (i.e. pesticides, GMOs).

With the advent of new technology and the Internet of Things, farmers are finding new ways to improve their yields. Fortunately for us, these new ways are decidedly less disturbing than toxic chemicals and genetic manipulation. Using sensors and networked communication, farmers are discovering ways to optimize already-known best practices to increase yield and reduce resource consumption.

If it’s surprising that the agricultural industry would be technological innovators, it’s worth considering how agriculture is in many ways an ideal testbed for new technology.

There are a few good reasons for this:

1. Ease of Deployment

Unlike in other industries, deploying sensors and other connected devices on a farm can be relatively easy and inexpensive. In a heavy industrial environment like a factory or refinery, new technology must replace old technology that is thoroughly embedded in the production infrastructure. There are concerns about downtime and lost revenue, as well as concerns about finding the right products or group of products to integrate into their existing technological ecosystem. On a typical farm, there is no need for downtime, and usually no concern for any existing technology that may be incompatible. Inexpensive sensors placed in various parts of a cultivated field can quickly yield very useful actionable data without disrupting a single process.

2. Instant Value

Another reason that agriculture has provided such a fertile testbed for IoT technology is the speed with value and ROI can be realized. Pre-existing metrics of precision agriculture can be applied more easily, maximizing the already-known benefits of established practices (knowing what types of crops to plant when, knowing when and how much to water, etc.). Farmers have also had success safely and naturally controlling pests through the intelligent release of pheremones. Of course, there is the obvious and very tangible benefit of decreased resource consumption and increased yield. A modest investment can yield measurable results within a single season.

3. Continual value

In agricultural IoT deployments, the same practices that provide instant value will continue to provide value for as long as they are employed. Conservation of water and waste reduction provide repeated value, as well as the increased yield brought on by precision farming. There are also opportunities to improve the equipment that farmers use every day. A connected combine or tractor can record useful information about its operation and maintenance. It can also allow for certain processes to be optimized and automated.

There are some real concerns about our ability to feed our ever-growing population in the future. While controversial technologies like genetically-modified-organisms have helped to increase food production, these techniques are not exactly popular with the general public, several of whom have voiced concerns about the long-term impact of a genetically-modified diet.

The good news is that similar increases in food production are possible without the need to modify the food; we simply have to modify the processes used to produce it. And it’s not just about food production. Plants are also used for biofuels and as raw materials in manufacturing. By increasing yield and reducing resource consumption, growers are also having a positive impact on numerous other industries.

For instance, a Colorado-based company called Algae Lab Systems is helping algae farmers improve their output by introducing sensors to measure environmental factors like temperature, pH, and dissolved oxygen in their photobioreactors and algae ponds. Algae growers are now able to continuously monitor their crops from any location, also allowing for larger and geographically dispersed operations.

A case study detailing Algae Lab Systems provides some insight into how they are transforming the algae farming industry, and aquaculture in general.

Read It Now

To Each His Own: Creating Custom Dashboards for Operators and Analysts

manyFaces

It’s always very annoying when I try to perform what seems like it would be fairly routine maintenance on a home appliance or worse – my car – only to find out that this seemingly simple thing I would like to do is actually quite difficult with the tools at my disposal. A little bit of research usually reveals that it actually is quite simple; I just have to buy this proprietary tool from the manufacturer for what seems like a ridiculous price, and then I can proceed.

Of course, it’s easy to understand why the manufacturer doesn’t want to make it easy for end users to service their product. They want you to buy a new one, or at the very least buy this overpriced tool from them so they can scrape every morsel of profit afforded by their built-in obsolescence.

It really makes me appreciate the simplicity and widespread application of some of our more traditional tools. Take a hammer, for instance. If you need to drive a nail into wood, it doesn’t matter if it’s a big nail, a little nail, a long nail, or a short nail. It doesn’t matter who manufactured it or when. All that matters is that it’s a nail. Just get a hammer; you’ll be fine.

This got me thinking. What if we had a hammer for every type of nail available? What if each hammer was perfectly sized, shaped, weighted and balanced for each particular nail? And what if that perfect hammer was always available to you every time you needed it. This isn’t realistic, obviously, but it reminds me of some of the things I hear from our customers.

One of the great benefits cited by our end users is the ability to create custom dashboards for the different work responsibilities in their organizations. The same system is used to create maintenance dashboards for technicians, control panels for operators, system overviews for managers, reports for analysts, and even special dashboards for contractors and vendors. By providing every member of the team with a real-time view of exactly the information they need to do their jobs and nothing more, each person is empowered to do their jobs with the utmost efficiency – improving the speed and accuracy of decision-making as well as increasing the capacity for planning.

In the past, so much of our data visualization was tied to the device from which the data was drawn. If you wanted to know something about a particular machine, you had to look at the same picture as everyone else, regardless of what you needed to see.

Some modern software platforms like B-Scada’s Status products eliminate this need to tie visualizations to the device from which the data is drawn. It is now possible to visualize data from multiple devices at multiple locations through the same interface. This allows for a new concept in user interface design: rather than displaying all available information about this particular thing, you can now display all information relevant to a particular task or set of tasks.

It’s not quite “a hammer for every nail”; it’s more like a complete tool set tailored to every job, containing exactly the tools you need and nothing more. It’s really been a transformative development for many organizations.

B-Scada recently released a case study detailing how one prominent North American electric utility used Status to create a system of customized views for their operators, managers, and analysts, providing specific insights into the real-time status of their generation resources:

Read It Now

 

The Four Biggest Challenges to Enterprise IoT Implementation

stopsign

After endless cycles of hype and hyperbole, it seems most business executives are still excited about the potential of the Internet of Things (IoT). In fact, a recent survey of 200 IT and business leaders conducted by TEKSystems ® and released in January 2016 (http://www.teksystems.com/resources/pressroom/2016/state-of-the-internet-of-things?&year=2016) determined that 22% of the organizations surveyed have already realized significant benefits from their early IoT initiatives. Additionally, a full 55% expect a high level of impact from IoT initiatives over the next 5 years. Conversely, only 2% predicted no impact at all.

Respondents also cited the key areas in which they expect to see some of the transformational benefits of their IoT efforts, including creating a better user and customer experience (64%), sparking innovation (56%), creating new and more efficient work practices and business processes, (52%) and creating revenue streams through new products and services (50%).

The IoT is Expected to Impact Organizations in Numerous WaysThe IoT is Expected to Impact Organizations in Numerous Ways

So, with the early returns indicating there are in fact real, measurable benefits to be won in the IoT, and the majority of executives expect these benefits to be substantial, why are some organizations still reluctant to move forward with their own IoT initiatives?

As could be expected, security is the biggest concern, cited by approximately half of respondents.

Increased exposure of data/information security – 50%

With the World Wide Web as an example, people today are well aware of the dangers inherent in transmitting data between nodes on a network. With many of these organizations working with key proprietary operational data that could prove advantageous to a competitor if exposed, the concern is very understandable.

 

ROI/making the business case – 43%

This is a classic example of not knowing what you don’t know. Without an established example of how similar initiatives have impacted your organization in the past – or even how similarly sized and structured organizations have been impacted – it can be very difficult to demonstrate in a tangible way exactly how these efforts will impact the bottom line. Without being able to make the business case, it will be difficult for executives to sign off any new initiatives. This is likely why larger organizations ($5+ billion in annual revenue) are much more likely to have already implemented IoT initiatives, while smaller organizations are still in the planning phase.

 

Interoperability with current infrastructure/systems – 37%

Nobody likes to start over, and many of the executives surveyed are dealing with organizations who have made enormous investments in the technology they are currently using. The notion of a “rip and replace” type of implementation is not very appealing. The cost is not only related to the downtime incurred in these cases, but the wasted cost associated with the expensive equipment and software systems that are being cast aside. In most cases, to gain any traction at all a proposed IoT initiative will have to work with the systems that are already in place – not replace them.

Finding the right staff/skill sets for IoT strategy and implementation – 33%

With the IoT still being a fairly young concept, many organizations are concerned that they lack the technical expertise needed to properly plan and implement an IoT initiative. There are many discussions taking place about how much can be handled by internal staff and how much may need to be out-sourced. Without confidence in their internal capabilities, it is also difficult to know whether or not they even have a valid strategy or understanding of the possibilities. Again, this is a case where larger organizations with larger pools of talent have an advantage.

The full results break down like this:

chart2.png
Many Organizations are Hesitant to Invest Much in IoT Initiatives at this Stage

 

There are some valid concerns, and not all of them lend themselves to simple solutions. In truth, many of the solutions will vary from one organization to the next. However, in many cases the solutions could be as simple as just choosing the right software platform. Finding a platform that eases your concerns about interoperability can also help ease your concerns about whether or not your staff can handle the change, as there will be no need to replace equipment. Likewise, a platform that can be integrated seamlessly into your current operations to help improve efficiency and implement optimization strategies will also make it much easier to demonstrate ROI.

B-Scada has released a new whitepaper on choosing the right IoT platform for your project. If you’re thinking about taking that leap into the IoT, it’s well worth the read.

Read It Now

Oh, The Possibilities … When the IoT Grows Up

5Ways.jpg


The Internet of Things is something like a gangly, acne-covered adolescent with knobby knees and a clumsy gait.
We can see the bright eyes, the long legs and strong hands, and we know it is chock full of “potential”, but it sure is awkward right now.

Notwithstanding all of this awkwardness, however, this clumsy youngster has already made a tremendous difference in the world. The very thought of its possibilities has sent a tremor to the core of our civilization, touching every aspect of our material and intellectual lives. Just consider the fact that the sentence you just read – as blustery and over-the-top as it may seem – is not even inaccurate. Sure, a person can still live a simple life without all of the trappings of modern technology or communication media (I assume?), living only from sustenance won by his or her bare hands directly from the natural world, never interacting with another living soul. I suppose this is possible, and maybe this person could make a strong case that his/her life remains untouched in any way by the Internet of Things. This person, however, will not be reading this and need not be a part of the conversation.

So, to reiterate: the Internet of Things – or at least the thought of it – is influencing every component of our world today. This is because it is not simply an evolution of technology; it the sort of technological/philosophical movement that transforms civilizations. On the order of agriculture, kingship, or industrialization.

Yes, it is that significant.

That is to say, the technological/ philosophical movement started by the Internet itself is that significant. After all, the words, images, videos, and applications that inhabit the regular old Internet are themselves ‘things’. The concept behind what we call the Internet of Things is simply the dawning of the realization that the Internet is not just about people communicating with people; it’s about everything communicating with everything.

Consider what we already see happening to:

 

Cities

In Oskarshamm, Sweden smart building technology has helped reduce the city’s power consumption by 350 MWh, reducing their carbon footprint by 80 tons of CO2. Houston, Texas has used new sensing technology to retrofit 40 municipal buildings for energy efficiency, delivering $3 million in yearly energy and water savings.

Entire cities are changing the way they govern their populations, the way they distribute resources, the way they police themselves. Cities are changing the way they transport goods and people, the way they measure and control their impact on their environments. Everything that defines what a city is and does is being transformed by not just new technologies, but the new ideas inspired the Internet of Things.

 

Agriculture

One of the foundational elements of civilization, a technological/philosophical movement that predates history itself, is being profoundly influenced by the Internet of Things. Farmers large and small are using networked data to maximize the already-known benefits of established practices (knowing what types of crops to plant when, knowing when and how much to water, etc.). Farmers have also had success safely and naturally controlling pests through the intelligent release of pheromones. Decreased resource consumption and increased yield are very tangible benefits that have the potential to solve some very serious problems related to food shortages and ever-increasing populations, while simultaneously reducing the environmental impact of farming and bringing the family-owned farm back into the global marketplace.

 

Industry

This is the realm of autonomous factories and self-healing machines. Through the convergent development of advanced computing power, sophisticated network technology, sensors, robotics, and analytic techniques, we are seeing the integration of industrial systems both vertically and horizontally. Machines to Machine communication, predictive maintenance, and continuous improvement programs are completely reinventing manufacturing.

Companies like Honda and ABB are using IoT technology to consolidate and organize their manufacturing and maintenance operations through systems of real-time communication and process automation. Companies are using advanced analytics to discover unknown opportunities for improved efficiency. Consider how Kennametal reduced their production cycle time by as much as %40 by simple modifications to their processes like changing the angle of a cut in a particular machining operation.

Real-time consumer data is helping companies be more responsive to the needs and expectations of their customers, and eliminating gaps between supply and demand. Predictive analysis is helping to reduce maintenance costs and incrementally improve production processes through systems of continual improvement. A unique quality of the impact the Internet of Things is having on Industry is its benefits extend beyond the marketplace. Whereas previously profit increases were sought by increasing the scale or speed of production, the new paradigm focuses on increasing efficiency, reducing resource consumption and eliminating waste. The new industrial landscape of smart, connected devices will incidentally lead to a cleaner, safer, more sustainable planet, which leads to the next item…

 

Environment

It is certainly possible to see new technologies as a double-edged sword in this arena. Historically, what humankind has deemed to be good for itself has quite often seemed to be detrimental to our environment. As the Internet of Things makes it easier for us feed and accommodate larger populations, and populations continue to grow, it is not difficult to see how this could negatively impact the environment. An interesting quality of the philosophical thrust behind most Internet of Things initiatives, though, is the tendency toward reduction and conservation.  Use fewer resources. Create less waste. Do as much as possible with what is available to us. In a way that may be unprecedented, this worldwide technological evolution may actually improve our relationship with the natural world.

 

Yes, the Internet of Things is a gangly, awkward, stumbling bunch of possibilities right now, but it is already changing our world. And while we may not have reached that tipping point yet – the point where what is possible becomes what is necessary, and a movement truly transforms our civilization – I think most of us can feel the axis tilting.

There will inevitably come a time when what is happening becomes what has happened, and we will only recognize the revolutionary quality of it when we look back at it in retrospect. In the case of the Internet of Things, I think we have reason to be optimistic.

(Originally published on the B-Scada, Inc. blog.)

3 Keys to Effective Real-Time Data Visualization

Everybody appreciates the value of a good picture. Each one says a thousand words, after all, or so the saying goes. If we really dig in to this metaphor, we’d probably admit that some pictures say substantially more than that – while others probably come in well under a dozen (just look at a random Facebook wall for some examples).

Ours has become a very visual culture, and one occupying a place in time defined by an overwhelming abundance of information all around us. Considering these two facts, it is not at all surprising that we see such an increased interest in data visualization – that is to say the process of placing a particular, specific set of data points in a highly visual context that allows it to be quickly consumed and analyzed.

It’s not a new concept; data has been visualized in pictures for centuries. A map is a type of data visualization, for instance, as are the many charts and graphs that have been used since the end of the 18th Century. What is new is the massive quantity of data available to nearly everyone, and the wide array of tools that can be used to create compelling visualizations. Think about the cool infographic you saw the other day. Was it created painstakingly over several days of carefully reviewing ethnographic data compiled by a dogged scientist over the course of his career? Maybe, but probably not. It was more likely created by some marketing department somewhere (not that there’s anything wrong with that) using somebody else’s data and somebody else’s visualization tools.

The purpose of this post, though, is not to discuss the merits of data visualization in general, but rather the specific subset of data visualization that deals with real-time data. This is a completely separate species of data visualization and should be treated as such.

Real-time data visualization refers to visualization of data that is continuously updated as new data is generated by connected devices or people. This is the type of data that is used to make real-time decisions and, when done correctly, can truly transform business processes.

There are a number of important factors to consider when attempting to visualize data in real time, but we will focus on three simple and obvious keys: clarity, consistency, and feedback.

 

Clarity

Real-Time graphics should emphasize pertinent information and use design principles that promote ease-of-use and accessibility above aesthetics. Things like size, color and brightness can be used to distinguish primary details from secondary and tertiary details. Special graphics can be created to emphasize different information under different conditions (i.e. a special set of graphics to be used when a certain alarm is triggered).

 

Hierarchical Data
Hierarchical Data Makes its Relevance Obvious

Clear visualizations provide actionable information at a glance, and clearly show the current process state and conditions. Alarms and indicators of abnormal conditions are prominent and impossible to ignore.

Clarity encompasses both content and context.

dataVis3.png
Contextual Controls Allow You to Assess Current Conditions at a Glance

 

Consistency

Consistent visualizations are standardized and consistently formatted. Interaction requires a minimum of keystrokes or pointer manipulations.

Shapes, colors, and layouts should be used consistently through all screens. If the color red is used in one place to designate an abnormally high value on one screen, that same color red should be used to indicate all abnormally high values of the same type on all screens. If navigation buttons are on the left side of one screen, they should be on the left side of all screens. A consistent visualization system is arranged in a logical, hierarchical manner, allowing operators to visualize both a general overview of the system as well as more detailed information on different components as needed. Navigation and interaction of any type should be as easy and intuitive as possible.

Consistency is closely related to clarity.

dataVis4.png
Color is a Great Way to Distinguish One Property from Another, As Long As it Is Consistently Applied.

 

Feedback

An operator should be fully confident that the choices they make are having the desired effect. Screens should be designed in a way that provides information, putting relevant data in the proper context. Also, important actions that carry significant consequences should have confirmation mechanisms to ensure that they are not activated inadvertently.

Controls will function consistently in all situations. If something is not working as it should, that fact should be immediately obvious and undeniable. In a well-designed system, design principles are employed to reduce user fatigue.

There are obviously many other important factors to consider when real developing a real-time visualization system. Anyone who wants to dig deeper is encouraged to read this free whitepaper on the subject:

Click here to read it

What Should We Expect From the ‘Smart Cities’ of Tomorrow?

virtualvillemenuimg4website

There are an awful lot of ‘smart’ things these days. Even many things that were previously ‘dumb’ are becoming ‘smart’ through the addition of sensors and decision logic. From street lamps to subways and everything in between, the very towns and cities we inhabit are joining the trend.

As cities like Seoul and Vienna (among many) are using technology to revamp their communication infrastructure and resource distribution, we all have an opportunity to learn some things about what we can expect when the ‘smart’ label gets slapped onto the towns and cities we call home.

So, what makes a city smart?

Unfortunately, the term ‘smart’ applies only to the city itself and not its citizens. A global tour of the world’s smartest cities is not likely to be any more personally enlightening than a stroll through any of our regular old ‘dumb’ cities. However, this global tour would likely reveal some of the common traits that these smart cities share, and shed some light on how and where resources are being applied to make these cities smarter.

A city is generally considered smart when it distinguishes itself from other cities in terms of its technology, urban planning, environment, and/or overall management.

Smart cities are expected to be cleaner, safer, and more efficient than their dumb brethren. This is accomplished primarily through the application of new technologies, but also frequently requires entirely new models for organization and management.

Some of the more prominent features of today’s smart cities include:

  • Green Buildings: Smart cities tend to erect new buildings (or enforce laws requiring others to erect buildings) that have the least possible environmental impact – both during construction and operation. Older buildings can be retrofit with more efficient appliances and sensors to help control lighting and temperature.
  • Smart Mobility and Transport: Bike-sharing programs, smart traffic lights, sensor-based parking availability detection, and real-time communication about public transportation are some of the hallmarks of a smart city.
  • More Efficient Utilities: In addition to employing alternative energy sources like solar and wind, smart cities are frequently more inclined to employ smart grid technology and use sensors to manage the distribution of water and reduce waste.
  • More Engaged Citizens: Another common trait of smart cities is a pronounced effort to be more responsive to the needs of their human resources. Whether through smart street lights, cleaner streets, social media involvement, digital signage, and many other initiatives, smart cities are putting more effort into involving citizens in the city’s governance.

Of course, these are just a few of the many ways that cities are remaking themselves as smart cities. In some cases – in cities like Santiago and Tokyo – entire smart communities are being developed according to all of these principles and more.

Since a real economic incentive can be attached to the idea of reduced waste and greater energy efficiency, it is very likely that this trend will continue well into the 21st century, until when eventually the smart cities of today will be referred to as simply “cities”.
Virtualville, USA

Tomorrow’s smart cities are going to require new tools to consolidate, organize, and analyze the voluminous data coming in from the city’s systems. New organizational models must be established and new technology must be deployed.

Remote monitoring and management systems like the one modeled in B-Scada’s Virtualville will become indispensable tools to city administrators, allowing management personnel a real-time view into any of the city’s systems from anywhere at any time. It also provides a means of automating certain processes according to particular rules.

To learn more about B-Scada’s Smart City platform, visit: http://votplatform.com.