4 Ways Mobile Devices Have Transformed Remote Monitoring and Process Control

mobileHMI

Mobile devices have changed many things about the way we live and work today. They’ve changed the way we interact with each other, consume new media, purchase goods and services – they have become essential lifestyle accessories in a relatively short period of time. This is true not only for individuals, but entire industries have been impacted in a significant way.

With that in mind, here’s a look at 4 ways in which mobile devices are changing remote monitoring and process control.

Remote Device Monitoring

Mobile devices can be used as portable HMIs (Human Machine Interfaces) to monitor remote equipment in the same way that standard HMIs are used. Field operators can quickly and easily assess the current conditions of a process or piece of equipment without being tied to a workstation.

This can be particularly useful for checking the system-wide effects of repairs or configurations that are made to field equipment, rather than manually visiting each piece of equipment to take measurements or waiting until someone in the control room lets him/her know about any potential problems or abnormalities.

There may also be situations in which a problem can be diagnosed and corrected without even visiting the site. By giving field operators and technicians the ability to access real-time data from wherever they may be, it may possible to eliminate any travel time or expense, freeing the operator or technician to work on other tasks. This may also eliminate the need for the technician to call back to the control room for updated information. This means the control room operator now has more time as well.

 

Viewing Documents and Other Media

In addition to monitoring and controlling processes and equipment, mobile devices can also serve as a sort of repository for useful information, providing a handy reference for materials that would ordinarily fill several books and would be nearly impossible to carry around over the course of a work day.

New workers can reference training materials like manuals, pictures and videos. Use tablets and smartphones to access safety guidelines or troubleshooting procedures. View schematics and diagrams.  Review incident reports or outstanding work orders.

If you think of mobile devices as nothing more than a portable library of relevant media, this use alone is enough to justify the investment.

 

Filling out Forms or Checklists

Operators and technicians frequently have a need to add information to a database regarding certain tasks performed – or simply as part of their day-to-day responsibilities. Whether performing inspections, completing service orders, updating personnel files, or any number of other tasks, mobile devices can save employees a tremendous amount of time by allowing them to perform these tasks from anywhere at any time.

 

Field technicians can update the control system instantaneously from the field – without having to return to the control room to fill out a form or deliver the results to a control room operator over the phone.  It’s not hard to imagine a scenario where a technician in the field, several miles from any control room, can use a single device to read a procedural document, review a checklist, enter relevant information into a form, then check to confirm that the information was entered completely and accurately – without any unnecessary travel time or phone calls.

 

Collaborating

One of the most profound applications of mobile devices is as a tool for instant collaboration. By allowing continuous access to live process data, personnel from different departments can collaborate and make decisions with up-to-date and accurate information at their fingertips.

Mobile devices can be used to document best practices by uploading pictures or videos of particular procedures and allowing these items to be reviewed by workers at other locations in other facilities. Smartphones and tablets allow personnel to access rich media at any time as a means of conveying a certain set of information to relevant parties. Use displays of real time and historical data in meetings or presentations. Mobile devices allow off-site personnel to participate in real-time activities with on-site personnel. Many possibilities are introduced by mobile technology.

Excerpted from the whitepaper “The Benefits of Data Mobility”, downloaded at www.scada.com.

Advertisements

3 Keys to Effective Real-Time Data Visualization

There are several important factors to consider when creating your real-time data visualization, many of which will depend on your intended application. Today, we consider at a few of the general factors that will play a role in every visualization you create. These three factors are clarity, consistency, and feedback.

Clarity

Real-Time graphics should emphasize pertinent information and use design principles that promote ease-of-use and accessibility above aesthetics. Things like size, color and brightness can be used to distinguish primary details from secondary and tertiary details. Special graphics can be created to emphasize different information under different conditions (i.e. a special set of graphics to be used when a certain alarm is triggered).

clarityPic

When planning a real-time visualization scenario, it is very important to consider who will be using this visualization, and what is his/her purpose in viewing this data. This will obviously vary from one organization to the next, but when differentiating between primary, secondary, and tertiary information, it is important to not think in terms of what is important about the thing being monitored, but what is important to the person doing the monitoring.

 

Consistency

Consistent visualizations are standardized and consistently formatted. Interaction requires a minimum of keystrokes or pointer manipulations. In fact, whenever possible, all relevant information should be visible without the need to navigate to another screen. When navigation is necessary, be certain that elements of the user interface related to navigation are clearly distinguished from elements that relay pertinent information. Additionally, navigation and interaction of any type should be as easy and intuitive as possible.

chart

The ergonomic needs of the user are also extremely important. Poor data visibility has been cited as a primary cause of many industrial accidents where a process was being monitored or controlled through a real-time HMI (Human Machine Interface). In fact, poorly designed HMIs have been blamed for accidents that have led to millions of dollars in damaged equipment and some very unfortunate and unnecessary deaths.

 

A recent study by OSHA in Europe compiled statistics on HMI-related errors in the workplace. Interestingly, research shows that the majority of problems are caused by human error, but not entirely because of mental and physical fatigue. More often, errors are caused by poor decision-making related to the way that information is processed.

  

Feedback

An operator should be fully confident that the choices they make are having the desired effect. Screens should be designed in a way that provides information, putting relevant data in the proper context. Also, important actions that carry significant consequences should have confirmation mechanisms to ensure that they are not activated inadvertently.

 Controls will function consistently in all situations. If something is not working as it should, that fact should be immediately obvious and undeniable. Again, in a well-designed system, design principles are employed to promote clarity and simplicity, and to reduce user fatigue.

Keep it simple and straight-forward. Save the complex visual tools for historical data or real-time reporting. There is certainly a place for all of this, but that place is not where real-time data is being used to make real-time decisions.

Learn more in the free whitepaper “Real-Time Data Visualization Essentials”:

wpCover
http://scada.com/Content/Whitepapers/Real-Time%20Data%20Visualization%20Essentials.pdf

 

 

Is the Internet of Things Really Happening?

Over the last few years there has been much speculation about the inevitable growth of the Internet of Things (or Internet of Everything). Forecasts have suggested anywhere from 30 to 50 billion devices will be connected by 2020. Cisco has estimated that the global IoT ecosystem will have a value of $14.4 trillion by 2022, and IDC has projected yearly IoT market revenue to increase to $1.7 trillion by 2020.

Here we are now in 2016, a few years into the future they were talking about back then, and it may be a good time to take a look the current state of the IoT and see how it measures up to all of these lofty expectations. Are people really embracing IoT technology at this rate? Is this money really being invested?

connectedDevices.png

Connected Devices

First, let’s take a look at the number of connected devices. If we flash back to 2013, we find that Gartner released a report entitled “Forecast: The Internet of Things, Worldwide, 2013”. In this report, they predicted that the IoT will include 26 billion connected devices by 2020. Two years later, Gartner reported a total of 4.9 billion connected devices at the end of 2015, up from 3.8 billion in 2014. Gartner also revised their 2020 estimate, anticipating 20.7 billion connected devices by 2020, a decrease of 5.3 billion (20.4%) from their 2013 estimate. (It should be noted here that Cisco continues to anticipate as many as 50 billion by 2020).

So, according to Gartner, IoT adoption has not proceeded at the rate they had anticipated at the end of 2013.

One reason for the slower-than-expected growth is the difficulty faced when trying to implement IoT technology. In fact, Gartner anticipates that through 2018, 75% of IoT projects will take up to twice as long as planned.

Value of the IoT

Now, let’s consider the monetary value of the IoT and how that number has progressed. Cisco initially projected a value of $14.4 trillion by 2022. Within two years Cisco had increased this number to $19 trillion.

value.png

This highlights an interesting fact. Even though fewer connected devices are expected by this date, the total value of these devices and the underlying network is expected to be greater than it was when more devices were expected. Based on this, I think it’s safe to suggest that implementing IoT technology is turning out to be more expensive than originally thought.

This may be due in part to the fact that some enterprises are rushing headlong into IoT projects without the proper foresight and planning. Often it is a reaction to competitive pressure, based on a perception that a competitor is already moving forward with their IoT strategy, or simply in an effort to be the first and gain a competitive edge.


“I think it’s safe to suggest that implementing IoT technology is turning out to be more expensive than originally thought.”


Another answer may come from Gartner’s 2015 report: “Predicts 2015: The Internet of Things”, in which Gartner predicts that through 2018, there will be “no dominant IoT ecosystem platform”. They cite a lack of IoT standards and anticipate that IT leaders will be forced to compose solutions from multiple providers.

 

Read our White Paper on Choosing the Right IoT Software Platform

IoTPlatformWP_cover.png
Read It Now

 

 

Even when faced with these realities, however, enterprises are still moving forward with their IoT projects. The extra expense – though unanticipated – is not nearly enough to outweigh the potential benefits. The IoT is most certainly transforming the way businesses operate, and no one wants to be the last one to this dance.

IoT Investment

This is an important category as it will largely determine how quickly the industry moves to develop standards, and how motivated IoT solution providers will be to develop more powerful and more cost-effective solutions.
Recall IDC’s projection of annual market revenue reaching $1.7 trillion by 2020. It would stand to reason that if we are learning that IoT projects are coming in over budget and late, there is probably some distaste in the marketplace, and maybe IDC’s projection was a bit ambitious.

At the same time, though, if people are spending more on IoT initiatives than they had originally planned, perhaps IDC’s projection was a bit conservative. Let’s examine how things are taking shape.

In 2015, IDC reported that worldwide IoT spending reached $655.8 billion in 2014 and calculated a 16.9% CAGR (Compound Annual Growth Rate).

Well, 2015 is now in the books and we can see how IDC’s projections seem to be holding up. Their latest report indicates that spending in 2015 reached $698.6 billion, a CAGR over 2014 of only 6.53%. Had IDC’s anticipated CAGR proven accurate, 2015 revenue should have been closer to $766 billion.

Notwithstanding this fact, however, IDC continues to project a CAGR of 17% and an increase in spending to $1.3 billion by 2019, which would equal approximately $1.5 billion in 2020. It looks like IDC sees the IoT market cooling off a bit, though not much.

revenue.png
So, while the earlier projection has proven to be overly optimistic, it is clear that investments in IoT initiatives are continuing to increase with no end in sight.

If there is any kind of meaningful takeaway from all of this, I think it’s safe to surmise that IoT projects may be coming in late and over budget, but that doesn’t seem to have had much of an impact on continued investments. It is clear that business owners and executives see the value and have no interest in letting their competitor’s gain an edge.
So, was the IoT hyped a bit excessively over the last couple of years? Maybe a bit. But, it is also very real and happening right now.